The PARP3- and ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair
نویسندگان
چکیده
APLF is a forkhead associated-containing protein with poly(ADP-ribose)-binding zinc finger (PBZ) domains, which undergoes ionizing radiation (IR)-induced and Ataxia-Telangiectasia Mutated (ATM)-dependent phosphorylation at serine-116 (Ser(116)). Here, we demonstrate that the phosphorylation of APLF at Ser(116) in human U2OS cells by ATM is dependent on poly(ADP-ribose) polymerase 3 (PARP3) levels and the APLF PBZ domains. The interaction of APLF at sites of DNA damage was diminished by the single substitution of APLF Ser(116) to alanine, and the cellular depletion or chemical inhibition of ATM or PARP3 also altered the level of accumulation of APLF at sites of laser-induced DNA damage and impaired the accumulation of Ser(116)-phosphorylated APLF at IR-induced γH2AX foci in human cells. The data further suggest that ATM and PARP3 participate in a common signalling pathway to facilitate APLF-Ser(116) phosphorylation, which, in turn, appears to be required for efficient DNA double-strand break repair kinetics and cell survival following IR. Collectively, these findings provide a more detailed understanding of the molecular pathway that leads to the phosphorylation of APLF following DNA damage and suggest that Ser(116)-APLF phosphorylation facilitates APLF-dependent double-strand break repair.
منابع مشابه
APLF (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks.
Aprataxin and polynucleotide kinase (PNK) are DNA end processing factors that are recruited into the DNA single- and double-strand break repair machinery through phosphorylation-specific interactions with XRCC1 and XRCC4, respectively. These interactions are mediated through a divergent class of forkhead-associated (FHA) domain that binds to peptide sequences in XRCC1 and XRCC4 that are phospho...
متن کاملThe Interaction of CtIP and Nbs1 Connects CDK and ATM to Regulate HR–Mediated Double-Strand Break Repair
CtIP plays an important role in homologous recombination (HR)-mediated DNA double-stranded break (DSB) repair and interacts with Nbs1 and BRCA1, which are linked to Nijmegen breakage syndrome (NBS) and familial breast cancer, respectively. We identified new CDK phosphorylation sites on CtIP and found that phosphorylation of these newly identified CDK sites induces association of CtIP with the N...
متن کاملPARP-3 and APLF function together to accelerate nonhomologous end-joining.
PARP-3 is a member of the ADP-ribosyl transferase superfamily of unknown function. We show that PARP-3 is stimulated by DNA double-strand breaks (DSBs) in vitro and functions in the same pathway as the poly (ADP-ribose)-binding protein APLF to accelerate chromosomal DNA DSB repair. We implicate PARP-3 in the accumulation of APLF at DSBs and demonstrate that APLF promotes the retention of XRCC4/...
متن کاملCharacterization of the APLF FHA–XRCC1 phosphopeptide interaction and its structural and functional implications
Aprataxin and PNKP-like factor (APLF) is a DNA repair factor containing a forkhead-associated (FHA) domain that supports binding to the phosphorylated FHA domain binding motifs (FBMs) in XRCC1 and XRCC4. We have characterized the interaction of the APLF FHA domain with phosphorylated XRCC1 peptides using crystallographic, NMR, and fluorescence polarization studies. The FHA-FBM interactions exhi...
متن کاملValproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells
Introduction H istone deacetylase inhibitors (HDIs), as radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...
متن کامل